高温合金

种类及用途

1、概述

   GH1140 是一种固溶强化的铁镍基高温合金,除含大量铬外,并用少量钨、钼、铝和钛等元素复合强化固溶体。合金具有中等的热强性、高的塑性、良好的热疲劳、组织稳定性和焊接工艺性能。适宜于制造工作温度850℃以下的航空发动机和燃气轮机燃烧室的板材结构件和其他高温部件。可以供应板、棒、管、丝、带材及锻件等各种变形产品。
1.1、材料牌号
   GH1140(GH140,CR-2) 
1.2、相近牌号
1.3、材料的技术标准
GJB 1952-1994《航空用高温合金冷轧薄板规范》   GJB 2297-1995《航空用高温合金冷拔(轧)无缝管规范》   GJB 2612-1996《航空用高温合金冷拉丝材规范》   GJB 3020-1997《航空用高温合金环坯规范》   GJB 3317-1998《航空用高温合金热轧板规范》   GJB 3318-1998《航空用高温合金冷轧带材规范》   GJB 3165-1998《航空承力件用高温合金热轧和锻制棒材规范》   GJB 3167-1998《冷镦用高温合金冷拉丝材规范》   GB/T 15062-1994 《一般用高温合金管》
1.5、热处理制度
   固溶处理:热轧板、冷轧薄板和带材1050~1090℃,空冷;丝材和管材1050~1080℃,空冷或水冷;棒材和环坯1080℃±10℃,空冷。 
1.6、品种规格与供应状态
   可供应各种规格的热轧板、冷轧板、带材、棒材、丝材、管材、锻件和环形件。板、管、丝、带经固溶处理和酸洗后供应。棒材和环形件于热轧或锻造状态供应。锻件于锻造状态或经固溶处理后供应。 
1.7、熔炼与铸造工艺
   电弧炉熔炼或电弧炉+电渣重熔。 
1.8、应用概况与特殊要求
   已用于制造多种航空发动机的燃烧室火焰筒、加力扩散器、整流支板、稳定器、输油圈、加力可调喷口壳体、管接头、衬套以及飞机机尾罩蒙皮等零部件,投入成批生产使用。在550~800℃温度范围内长期使用后稍有硬化现象,使室温塑性下降。在1000℃以上的高温抗氧化性比同类用途的镍基合金稍差。 
2、物理及化学性能
2.1、热性能
2.2、密度

   ρ=8.09g/cm3 
2.3、电性能
   室温电阻率ρ=1.07*10-6Ω.m 
2.4、磁性能
   合金无磁性。 
2.5、化学性能
   2.5.1、抗氧化性能   2.5.1.1、合金在空气介质中试验100h的氧化速率见表2-1。 

θ/℃70080090010001100
氧化速率/(g/(m2.h))0.0140.0280.1390.2700.523


2.5.1.2、合金在700℃以上长期工作时产生沿晶界氧化。在700℃~1200℃暴露100h后的最大晶界氧化深度。在700~900℃长期暴露1000h内的最大晶界氧化深度。   
2.5.1.3、该合金制造的火焰筒在高于900℃长期工作时,可能产生氧化剥落;氧化剥落的速度为0.016mm/100h。火焰筒中间段,长期工作后的氧化剥落深度   表2-2    

合金氧化剥落深度/mm氧化剥落深度/mm
200h800h
GH11400.0320.127
GH3039
0.115


2.5.1.4、合金在高温下长期工作时可采用65、66-4、W-2和W69-1珐琅涂层进行有效的保护,也可采用固体渗铝和真空喷镀铝涂层。合金基体和采用涂层后的抗氧化性对比见表2-3。

材料牌号100h氧化速率/(g/(m2.h))100h氧化速率/(g/(m2.h))100h沿晶氧化深度/μm100h沿晶氧化深度/μm
900℃1000℃900℃1000℃

GH1140
0.1620.23610~2026~30
GH1140+65涂层0.0550.08111~1530
GH1140+66-4涂层0.0470.07111~1530


材料牌号100h氧化速率/(g/(m2.h))100h氧化速率/(g/(m2.h))100h沿晶氧化深度/μm100h沿晶氧化深度/μm
900℃1000℃900℃1000℃
GH1140+W2涂层---0.076------
GH1140+固体渗铝---0.030------
GH1140+真空喷镀铝---0.027------


2.5.2、耐腐蚀性能 国产航空煤油无论有无CS2添加剂,对GH1140合金均无腐蚀作用,而对镍基合金,必须有添加剂才能防止腐蚀。若用国外航空煤油,有时也发现在严重的坑关腐蚀。 
3、工艺性能与要求
3.1、热成型工艺
   3.1.1、锻造时装炉温度≤700℃,加热温度1160℃±20℃,终端温度不低于900℃。   3.1.2、板坯热轧加热温度 1160℃±20℃,轧制温度1180~950℃,进最后一个孔型时温度最好控制在950~1000℃范围内。   3.1.3、热轧板荒轧加热温度1120℃,荒轧温度1120~850℃,热轧板一火轧成,总变形量要大于50%。   3.1.4、冷轧板轧压下量为30%~40%,成品板平整变形量不得大于3%。 
3.2 、冷成型性能
   3.2.1、板材的状态具有良好的塑性,成形工序在室温下进行。当以多次成形工艺制造零件时,每次冷成型后均进行中间,热处理。成型前零件表面涂以硝基清漆。




1、 概述
   1 、品种规格与状态 可以供应各种规格的棒材、板材、丝材、盘件和环件。棒材、圆饼和环坯不经热处理;热轧板和冷轧板固溶+酸洗;冷拉棒材固溶+酸洗状态;冷镦丝可于固溶+酸洗盘状、或固溶+酸洗直条状、或固溶直条关磨光和冷拉等几种状态;冷拉焊丝于冷拉状态、或固溶+酸洗、或半硬态。   1、溶炼与铸造工艺 合金可采用非真空感应+电渣,电弧炉+电渣和电弧炉+真空电弧以及真空感应+真空电弧等工艺溶炼。   1、应用概况与特殊要求 在航空上主要用于在650℃以下工作的发动机压气机盘、涡轮盘、承力环、机匣、轴类、紧固件、和板材焊接承力件等。在国内该合金已在航空上获得较为广泛的应用。
1.1、材料牌号
   GH2132 
1.2、材料相近牌号
   A-286 P.Q.A286 UNSS66286(美国)、ZbNCT25(法国)、GH2132(GH132)中国 
1.3、材料的技术标准
GJB 2611-1996 《航空用高温合金冷拉棒材规范》   GJB 2612-1996 《焊接用高温合金冷拉丝材规范》   GJB 3020-1997 《航空用高温合金环坯规范》   GJB 3165-1998 《航空承力件用高温合金热轧和锻制棒材规范》   GJB 3167-1998 《冷镦用高温合金冷拉丝材规范》   GJB 3317-1998 《航空用高温合金热轧板规范》   GJB 3782-1999 《航空用高温合锻制圆饼规范》   GB/T 14992-2005 《高温合金牌号标准》   GB/T14993-1994 《转动部件用高温合金热轧棒材》   GB/T14994-1994 《高温合金冷拉棒材》   GB/T14995-1994 《高温合金热轧板》   GB/T14996-1994 《高温合金冷轧薄板》   GB/T14996-1994 《高温合金冷轧薄板》   GB/T14997-1994 《高温合金锻制圆饼》   GB/T14998-1994 《高温合金坯件毛坯》   GB/T15062-1994 《一般用途高温合金管》
2、物理及化学性能
2.1、热性能

   2.1.1、溶化温度范围   1364~1424℃   
   2.1.2、热导率   表2-1    

θ/℃100200300400500600700800900
λ/(W/(m.C))14.215.917.218.820.522.223.925.527.6


  2.1.3、线膨胀系数   线膨胀系数见表2-2。   表2-2  

θ/℃20~10020~20020~30020~40020~50020~60020~70020~80020~900
a/10-6℃C-115.3716.0916.3116.8417.5818.0618.7419.6220.45


优质合金线膨胀系数见表2-3   表2-3  

θ/℃20~10020~20020~30020~40020~50020~60020~70020~80020~900
a/10-6℃C-115.716.016.516.817.317.517.919.119.7


2.2、密度
   ρ=7.93g/cm3 
2.3、电性能
   电阻率见表2-4。 

θ/℃20100200300400
ρ/(10-6 Ω.M)0.9140.9851.0181.0741.119

   
表2-4续


θ/℃
500600700800900
ρ/(10-6 Ω.M)1.1351.1.0181.0741.119


2.4、磁性能
2.5、化学性能

   2.5.1、抗氧化性能   合金在空气介质中试验100~300h后氧化速率表2-5。   表2-5 

θ/℃氧化速率/(g/(m2•h))氧化速率/(g/(m2•h))氧化速率/(g/(m2•h))θ/℃氧化速率/(g/(m2•h))氧化速率/(g/(m2•h))氧化速率/(g/(m2•h))

100h200h300h
100h200h300h
6500.004170.002760.002348500.116300.123860.09672
7500.032500.072160.08322------------

   
3、金相组织结构
   合金在标准热处理状态下,在γ基体上有球关均匀弥散的NI3(Ti,Al)型γ’相以及TiN,TiC,晶界有微量的M3B2,晶界附近可能有少量η相和L相 
4、工艺性能与要求
   1、该合金具有良好的可锻性能,锻造加热温度1140℃,终锻900℃。   
   2、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。   
   3、合金具有满意的焊接性能。合金于固溶状态进行焊接,焊后进行时效处理。



一、概述
   GH4145 合金主要是以γ"[Ni3(Al、Ti、Nb)]相进行时效强化的镍基高温合金,在980℃以下具有良好的耐腐蚀和抗氧化性能,800℃以下具有较高的强度,540℃以下具有较好的耐松弛性能,同时还具有良好的成形性能和焊接性能。该合金主要用于制造航空发动机在800℃以下工作并要求强度较高的耐松弛的平面弹簧和螺旋弹簧。还可用于制造气轮机涡轮叶片等零件。可供应的品种有板材、带材、棒材、锻件、环形件、丝材和管材。[1] 
1.1、材料牌号 GH4145(GH145)
1.2、相近牌号

   Inconel X-750(美国),NiCr15Fe7TiAl(德国),NC15FeTNbA(法国),NCF750(日本) 
1.3、材料的技术标准
   Q/3B 4088-1994《GH4145合金毛细管材》 
   Q/3B 4098-1995《GH4145合金丝材》 
   Q/3B 4198-1993《GH4145合金冷轧板材、带材》 
1.4、化学成分
   表1-1

CCrNi+CoAlTiFeNb+TaCoMnSiSCuP
≤0.0814.0~17.0≥70.00.40~1.002.25~2.755.00~9.000.70~1.20≤1.00≤1.00≤0.50≤0.010≤0.50≤0.015


注:表中Mn、Si为棒、锻件、环形件和丝材含量,板材、带材和管材为:Mn≤0.35%,Si≤0.35%。 
1.5、热处理制度
板、带、管材供应状态的固溶热处理制度980℃±15℃,空冷。材料及零件的中间热处理制度,可分别选择下列工艺进行热处理。
   退火:955~1010℃,水冷。
   焊接件焊接前退火:980℃,1h。
   焊接件消除应力退火:900℃,保湿2h。
   消除应力退火:885℃±15℃,24h,空冷。
1.6、品种规格与供应状态

  可以供应各种规格的棒材、锻件、环形件、热轧板、冷轧板、带材、管材和丝材。
   板材和带材一般于热轧或冷轧、退火或固溶、酸洗抛光后供应。
   棒材、锻件和环形件可于锻态或热轧状态供应;也可于锻后固溶处理供应;棒材可于固溶后磨光或车光供应,当订单有要求时,可于冷拉状态就位。
   丝材可于固溶状态供应;对于标称直径或厚度在6.35mm以下的丝材,可固溶后并以50%~65%的冷拉变形供应;标称直径或边长大于6.35mm的丝材,固溶处理后以不小于30%的冷拉变形供应。对于标称直径或边长不大于0.65mm的丝材,根据要求固溶处理后以不小于15%的冷拉变形供应。[1]
1.7、熔炼与铸造工艺
   合金采用电弧炉加真空自耗重熔、真空感应加电渣、电渣加真空自耗重熔或真空感应加真空自耗重熔。
1.8、应用概况与特殊要求
   该合金主要用于制造航空发动机工作温度在540℃以下的耐腐蚀的平面波形弹簧、周向螺旋弹簧、螺旋压簧、弹簧卡圈和密封圈等零件。
二、物理及化学性能
2.1、热性能
2.1.1、熔化温度范围

1395~1425℃
2.1.2、热导率
见表2-1 

θ/℃50100300500900
λ/(W/(m•C))14.715.920.125.137.3


   2.1.3、GH4145(GH145)线膨胀系数 见表2-2 

θ/℃20~20020~30020~40020~50020~60020~70020~800
α/10-6C-113.113.514.114.415.015.616.2


2.2、密度
   ρ=8.25g/cm3 
2.3、电性能
   50℃时的电阻率ρ=1.22*10-6Ω.m 
3、金相组织结构
   合金标准热处理状态的组织由γ基体、Ti(C、N)、Nb(C、N)、M23C6碳化物和γ’[Ni3(Al、Ti、Nb)]相组成,γ’含量大约为14.5%,是合金的主要强化相。 
4、工艺性能与要求
   1、合金的锻造温度在1220~950℃之间均易成形。该合金在剧烈成形工序后就进行固溶处理。 
   2、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。 
   3、合金具有较好的焊接性能,可进行各种焊接。焊接后进行时效处理可获得近似完全热处理状态的强度。 
   4、零件热处理就在无硫的中性或还原性气氛中进行,以免发生硫化。


GH4169 概述
该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中向析出和溶解规律及组织与工艺、性能的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。[1] 
1.1 GH4169 材料牌号
   GH4169(GH169) 
1.2 GH4169 相近牌号
   Inconel718(美国),NC19FeNb(法国) 
1.3 GH4169 材料的技术标准
   GJB 2612-1996 《焊接用高温合金冷拉丝材规范》 
   HB 6702-1993 《WZ8系列用GH4169合金棒材》 
   Q/6S 1034-1992 《高温紧固件用GH4169合金棒材》 
   Q/3B 548-1996 《GH4169合金锻件》 
   Q/3B 548-1996 《GH4169合金锻件》 
   Q/3B 4048-1993 《YZGH4169合金棒材》 
   Q/3B 4050-1993 《GH4169合金板材》 
   Q/3B 4051-1993 《GH4169合金丝材》 
   GB/T14992-2005 《高温合金》 
1.4 GH4169 化学成分
   该合金的化学成分分为3类:标准成分、优质成分、高纯成分,件表1-1。优质成分的在标准成分的基础上降碳增铌,从而减少碳化铌的数量,减少疲劳源和增强强化相的数量,提高抗疲劳的含量,提高材料的纯度和综合性能。 
   核能应用的GH4169合金,需控制硼的含量(其他元素成分不变),具体含量有工序双方协商确定。当ω(B)≤0.002%时,为与宇航工业用的GH4169合金加以区别,合金牌号为GH4169A。 
   表1-1



类别CCrNiCoMoAlTiFe
标准≤0.0817.0~21.050.0~55.0≤1.02.80~3.300.30~0.700.75~1.15
优质0.02~0.0617.0~21.050.0~55.0≤1.02.80~3.300.30~0.700.75~1.15
高纯0.02~0.0617.0~21.050.0~55.0≤1.02.80~3.300.30~0.700.75~1.15




类别NbBMgMnSiPSCuCa
--不大于不大于不大于不大于不大于不大于不大于不大于
标准4.75~5.500.0060.010.350.350.0150.0150.300.01
优质5.00~5.500.0060.010.350.350.0150.0150.300.01
高纯5.00~5.500.0060.0050.350.350.0150.0150.300.005




类别BiSnPbAgSeTeTlNO
-不大于不大于不大于不大于不大于不大于不大于不大于不大于
标准------0.0005---0.0003------------
优质0.0010.0050.0010.0010.0003------0.010.01
高纯0.000030.0050.0010.0010.00030.000050.00010.010.005



1.5 GH4169 热处理制度
   合金具有不同的热处理制度,以控制晶粒度、控制δ相形貌、分布和数量,从而获得不同级别的力学性能。合金热处理制度分3类: 
   Ⅰ:(1010~1065)℃±10℃,1h,油冷、空冷或水冷+720℃±5℃,8h,以50℃/h炉冷至620℃±5℃,8h,空冷。 
   经此制度处理的材料晶粒粗化,晶界和晶内均无δ相,存在缺口敏感性,但对提高冲击性能和抵抗低温氢脆有利。 
   Ⅱ:(950~980)℃±10℃,1h,油冷、空冷或水冷+720℃±5℃,8h,以50℃/h炉冷至620℃±5℃,8h,空冷。 
   经此制度处理后,材料中的δ相较少,能提高材料的强度和冲击性能。该制度也称为直接时效热处理制度。 
1.6 GH4169 品种规格与状态
   可供应模锻件(盘、盘整体锻件)、饼、环、棒(锻棒、轧棒、冷拉棒)、板、丝、带、管、不同形状和尺寸的紧固件、弹性元件等。交货状态有供需双方商定。丝材以商定的交货状态成盘装交货。 
1.7 GH4169 熔炼与铸造工艺
   合金的冶炼工艺分为3类:真空感应电渣重熔;真空感应加真空电弧重熔;真空感应加电渣重熔加真空电弧重熔。可根据零件的使用要求,选择所需的冶炼工艺,满足应用要求。 
1.8 GH4169 应用概况与特殊要求
   制造航空和航天发动机中各种静止件和转动件,如盘、环件、机匣、轴、叶片、紧固件、弹性元件、燃气导管、密封元件等和焊接结构件;制造何能工业应用的各种弹性元件和格架;制造石油和化工领域应用的零件及其他零件。 
   近年来,在对该合金研究不断深化和对该合金应用不断扩大的基础上,为提高质量和降低成本,发展了很多工艺:真空电弧重熔时采用氦气冷却工艺,有效的减轻铌偏析;采用喷射成形工艺生产环件,降低成本和缩短生产周期;采用超塑成形工艺,扩大产品的生产范围。 
2 GH4169 物理及化学性能
2.1 GH4169 热性能

   2.1.1 GH4169 熔化温度范围 1260~1320℃ 
   2.1.2 GH4169 导热率 见表2-1 
   表2-1 


θ/℃111002003004005006007008009001000
λ/(W/(m•C))13.414.715.717.818.319.621.222.823.627.630.4


   
  2.1.3 GH4169 比热容 见表2-2。 
   表2-2 
 


θ/℃3004005006007008009001000
c/(J/(kg•C))481.4493.9514.8539.0573.4615.3657.2707.4



2.1.4 GH4169 线膨胀系数 见表2-3。 
表2-3 


θ/℃20~10020~20020~30020~40020~50020~60020~70020~80020~90020~1000
α/10-6C-111.813.013.514.114.414.815.417.018.418.7



2.2 GH4169 密度
ρ=8.24g/cm3 
2.3 GH4169 电性能
2.4 GH4169 磁能型

   合金无磁性 
2.5 GH4169 化学性能
   2.5.1 GH4169 抗氧化性能 在空气介质中试验100h后的氧化速率见表2-4 
   表2-4 


θ/℃6007008009001000
氧化速率/(g/(m3•h))0.01760.02770.03510.09610.1620



3 GH4169 工艺性能与要求
3.1 GH4169性能 
3.1.1 因GH4169合金中铌含量高,合金中的铌偏析成都与冶金工艺直接相关。电渣重熔和真空电弧熔炼的熔炼速度和电极棒的质量状态直接影响材质的优劣。熔速快,已形成富铌的黑斑;熔速慢,会形成贫铌的白斑;电极棒表面质量差和电极棒内部有裂纹,均易导致白斑的形成,所以,提高电极棒质量和控制熔速及提高钢锭的凝固速率是冶炼工艺的关键因素。为避免钢锭中的元素偏析过重,至今采用的钢锭直径不大于508mm。品均化工艺必须确保钢锭中的L相完全溶解。钢锭两阶段均匀化和中间坯二次均匀化处理的时间,根据钢锭和中间坯的直径而定。均匀化工艺的控制与材料中铌的偏析成都直接相关。 
目前生产中采用的1160℃,20h+1180℃,44h的均匀化工艺,尚不足以消除钢锭中心的偏析, 
因此建议采用以下工艺: 
1.1150℃~1160℃,20h~30h+1180℃~1190℃,110h~130h; 
2.1160℃,24h+1200℃,70h。 
5.1.2 经均匀化处理的合金具有良好的热加工性能。钢锭的开坯加热温度不得超过1120℃。锻件的锻造工艺应根据锻件使用状况和应用要求,结合生产厂的条件而定。开坯和生产锻件时,中间退火温度和终端温度必须跟军零件所需要的组织状态和性能来确定,一般情况下,锻造的终端温度控制在930℃~950℃之间为宜。个类锻件的锻造温度和变形程度见表5-1 
表3-1 



锻件类别
第一次锻造第一次锻造第二次锻造第二次锻造晶粒度/级晶粒度/级
-加热温度/℃变形量/%加热温度/℃变形量/%基本晶粒个别大晶粒
普通1065~1090---1040~1065---4~6允许
高强1040~1065---1010~104030~508≥2
直接时效995~1025>50970~995>5010≥2



GH4169 预热
工件在加热之前和加热过程中都必须进行表面清理,保持表面清洁。若加热环境含有硫、磷、铅或其他低熔点金属,GH4169合金将变脆。杂质来源于做标记的油漆、粉笔、润滑油、水、燃料等。燃料的硫含量要低,如液化气和天然气的杂质含量要低于0.1%,城市煤气的硫含量要低于0.25g/m3,石油气的硫含量低于0.5%是理想的。 
加热的电炉最好要具有较精确的控温能力,炉气必须为中性或弱碱性,应避免炉气成分在氧化性和还原性中波动。 
GH4169 热加工
GH4169合金合适的热加工温度为1120-900℃,冷却方式可以是水淬或其他快速冷却方式,热加工后应及时退火以保证得到最佳的性能。热加工时材料应加热到加工温度的上限,为了保证加工时的塑性,变形量达到20%时的终加工温度不应低于960℃。 
GH4169 冷加工
冷加工应在固溶处理后进行,GH4169的加工硬化率大于奥氏体不锈钢,因此加工设备应作相应调整,并且在冷加工过程中应有中间退火过程。 
GH4169 热处理
不同的固溶处理和时效处理工艺会得到不同的材料性能。由于γ”相的扩散速率较低,所以通过长时间的时效处理能使GH4169合金获得最佳的机械性能。 
GH4169 打磨
在GH4169工件焊缝附近的氧化物要比不锈钢的更难以去除,需要用细砂带打磨,在硝酸和氢氟酸的混合酸中酸洗之前,也要用砂纸去除氧化物或进行盐浴预处理。 
GH4169 机加工
GH4169的机加工需在固溶处理后进行,要考虑到材料的加工硬化性,与奥氏体不锈钢不同的是, GH4169适合采用低表面切削速度。 
GH4169焊接
   沉淀硬化型的GH4169合金很适合于焊接,无焊后开裂倾向。适焊性、易加工性、高强度是这种材料的几大优点。 
   GH4169适合于电弧焊、等离子焊等。在焊接前,材料表面要洁净、无油污、无粉笔记号等,焊缝周围25mm 范围内要打磨露出光亮的金属。 
   GH4169 推荐使用的焊接材料: 
   GTAW/GMAW 
   Nicrofer S 5219 
   W.-Nr. 2.4667 
   SG-NiCr19NbMoTi 
   AWS A 5.14 ERNiFeCr-2 
   BS 2901 Part 5: NA 51 
4 GH4169 功能考核试验
   用该合金制造的涡轮盘、甩油盘、整体转子、轴、紧固件等零件已按照发动机所用的型号规范,在发动机零、部件试验中通过了超转、破裂、低循环疲劳试验;通过了高空台试车个长期(寿命)试车及试飞发射的考核,达到了设计和应用的要求。 
5 GH4169 使用建议

推荐使用,使用中必须避免出现超过材料承受性能的应力集中。



镍基变形高温合金 
英国牌号:Nimonic90
中国牌号:GH90

一、Nimonic90概述 
Nimonic90为时效强化型镍基变形高温合金,含有较高量的钴及多种强化元素。该合金在815~870℃有较高的抗拉强度和抗蠕变能力、良好的抗氧化性和耐腐蚀性、在冷热反复交替作用下有较高的疲劳强度以及良好的成形性和焊接性。主要供应热轧和冷拉棒材、冷轧板材、带材及冷拉丝材。用于涡轮发动机涡轮盘、叶片、高温紧固件、卡箍、密封圈及弹性元件等。 
1.1 Nimonic90材料牌号 Nimonic90。 
1.2 Nimonic90相近牌号 GH90(中国)。 
1.3 Nimonic90材料的技术标准 
1.4 Nimonic90化学成分 见表1-1。 
表1-1%

C

Cr

Ni

Co

Al

Ti

Mn

Si

P

S

Ag

Pb

Bi

B

Cu

Fe

Zr


不大于

≤0.13

18.0~21.0

余量

15.0~21.0

1.0~2.0

2.0~3.0

0.4

0.8

0.020

0.015

0.0005

0.0020

0.0001

0.020

0.2

1.5

0.15


注:丝材规定ω(pb)≤0.0010%。 
1.5 Nimonic90热处理制度 
1.5.1 Nimonic90冷拉棒材:1080℃±10℃,保温时间见表1-2,空冷或水冷+750℃±10℃,4h,空冷。 
表1-2

直径或较小截面尺寸/mm

≤3

>3~6

>6~12.5

>12.5~25

t/h

1

2

4

8

1.5.2 Nimonic90薄板和带材(软态):软化处理1100~1150℃,1~10min,适当介质中冷却+750℃±10℃,4h,空冷。 
1.5.3 Nimonic90薄板和带材(硬态):700~725℃,4h,空冷。 
1.5.4 Nimonic90弹簧用冷拉丝材:600℃±10℃,16h,空冷或650℃±10℃,4h,空冷。 
1.5.5 Nimonic90冷拉和固溶处理的弹簧丝材:1080℃±10℃,8h,空冷+700~750℃,4h,空冷。 
1.6 Nimonic90品种规格与供应状态 供应直径或内切圆直径不大于25mm的冷拉棒材或冷拉六角棒材;厚度不大于4mm的冷轧薄板和厚度不大于0.8mm的冷轧带材;直径不大于8mm的弹簧用冷拉丝材。冷拉棒材的供应状态按用途分为:镦锻用棒以冷拉磨光状态交货(当需方需求以固溶状态交货时,应在合同中注明);机加工用棒材经固溶并除氧化皮状态交货。冷轧薄板和带材(软态)经软化处理、碱酸洗、切边后交货;冷轧薄板和带材(硬态)以冷轧、切边后交货。弹簧用丝材以冷拉状态或冷拉后固溶处理状态交货。 
1.7 Nimonic90熔炼与铸造工艺 合金采用下列四种工艺之一进行熔炼:(1)感应熔炼加电渣重熔;(2)真空感应熔炼加电渣重熔;(3)真空感应熔炼加真空电弧重熔;(4)真空感应熔炼。 
1.8 Nimonic90应用概况与特殊要求 该合金在发动机上用作高温弹簧元件、高温紧固件、燃烧室卡圈、止动销等零部件。在国外还用作涡轮工作叶片、涡轮盘等零部件。 
二、Nimonic90物理及化学性能 
2.1 Nimonic90热性能 
2.1.1 Nimonic90熔化温度范围 熔点1400℃[1]。 
2.1.2 Nimonic90热导率 见表2-1。 
表2-1[1]

θ/℃

600

700

800

λ/(W/(m·℃))

21.76

23.93

25.57

 


2.1.3 Nimonic90线膨胀系数 见表2-2。 
表2-2[2]

θ/℃

20~100

20~200

20~300

20~400

20~500

20~600

20~700

20~800

20~900

α1/10-6℃-1

12.71

13.09

13.51

14.04

14.52

15.03

15.58

16.36

17.38

2.2 Nimonic90密度 ρ=8.20g/cm3。 
2.3 Nimonic90电性能 
2.4 Nimonic90磁性能 合金无磁性。 
2.5 Nimonic90化学性能 合金在1040℃以下具有良好的抗氧化性和耐腐蚀性能;在1040℃以上时易产生晶间氧化。 
三、Nimonic90力学性能 
3.1 Nimonic90技术标准规定的性能 
3.1.1 Nimonic90冷拉棒材技术标准规定的性能见表3-1。 
表3-1

技术标准

θ/℃

拉伸性能

持久性能

σb/MPa

σP0.2/MPa

δ5/%

σ/MPa

t/h

不小于

WS9 7016-1996

650

820

590

8

-

-

870

-

-

-

140

≥30

注:固溶状态供应的棒材,力学性能试样只进行时效处理。 
3.1.2 Nimonic90冷轧薄板和带材(软态)技术标准规定的性能见表3-2。 
表3-2 

技术标准θ/℃成品厚度/mm拉伸性能硬度HV持久性能
σb/MPaσP0.2/MPaδ5/%σ/MPat/h
不小于
WS9 7087-1996室温0.25~0.35108069515≥280--
>0.35~0.45108069520
>0.45108069525
870所有----140≥30


注:持久试验的试样热处理制度:供应状态+1080℃±10℃,8h,空冷+700℃±10℃,16h,空冷。 
3.1.3 Nimonic90冷轧薄板和带材(硬态)技术标准规定的性能见表3-3。 
表3-3

技术标准

θ/℃

拉伸性能

σb/MPa

σP0.2/MPa

WS9 7086-1996

室温

1390~1620

≥1030

3.1.4 Nimonic90弹簧用丝材技术标准规定的性能见表3-4。
表3-4

技术标准

θ/℃

成品厚度/mm

拉伸性能

持久性能

σb/MPa

σP0.2/MPa

δ5/%

σ/MPa

t/h

不小于

WS9 7014-1996

室温

≤1.0

1540

-

-

-

-

>1.0~5.0

1390

1160

-

>5.0~8.0

1310

1000

10

-

-

870

坯料

-

-

-

140

≥30

WS9 7015.1-1996

室温

>0.44~0.99

1080

-

15

-

-

>0.99~8.0

1080

-

15

-

-

870

坯料

-

-

-

140

≥30

注:进行持久试验的坯料热处理制度:1080℃±10℃,8h,空冷+700℃±10℃,16h,空冷。 
3.1.5 Nimonic90生产检验数据 
3.1.5.1 Nimonic90冷拉棒材650℃拉伸性能的统计处理结果见表3-5。 
表3-5

技术标准

冶炼工艺

650℃拉伸性能

σb/MPa

σP0.2/MPa

δ50mm/%


WS9 7016-1996

真空感应加电渣

975

670

24

3.1.5.2 Nimonic90弹簧用丝材室温拉伸性能的统计处理结果见表3-6。 
表3-6

技术标准

冶炼工艺

丝材直径/mm

室温拉伸性能

σb/MPa

σP0.2/MPa

δ50mm/%


WS9 7014-1996

真空感应熔炼

≤1.0

1800

-

-

>1.0~5.0

1515

1260

-

WS9 7015.1-1996

>0.99~8.0

1180

690

27

四、Nimonic90组织结构 
4.1 Nimonic90相变温度 
4.2 Nimonic90时间-温度-组织转变曲线 
4.3 Nimonic90合金组织结构 合金的主要强化相是γ′-Ni3(Al、Ti),在晶内以大小不同的方形颗粒状析出,在晶界上也可见到这种形状的γ′相。碳化物在晶界上呈不连续的链状析出[2]。 
五、Nimonic90工艺性能与要求 
5.1 Nimonic90成形性能 合金在锻造时易产生内裂,不允许重锤打击,不允许低温倒棱。钢锭装炉温度不高于700℃,最终加热温度1150℃±10℃,开锻温度不低于1060℃,终锻温度不低于950℃。轧制加热温度1160℃,终轧温度不低于950℃。冷拔材在最终中间退火后应进行8%~12%的冷变形。 
5.2 Nimonic90焊接性能 合金在固溶状态可进行惰性气体保护钨极电弧焊及闪光对焊。 
5.3 Nimonic90零件热处理工艺 零件的热处理工艺按相应的材料技术标准的热处理制度进行。 
5.4 Nimonic90表面处理工艺 
5.5 Nimonic90切削加工与磨削性能 Nimonic90在固溶处理状态有良好的机械加工性能,在时效处理后使用坚硬刀具按规定进刀量慢速加工。


镍基变形高温合金 
英国牌号:Nimonic80A
中国牌号:GH80A
一、Nimonic80A概述 
Nimonic80A是以镍-铬为基体,添加铝、钛形成γ′相弥散强化的高温合金,除铝含量略高外,其他与GH4033相近,使用温度700~800℃,在650~850℃具有良好的抗蠕变性能和抗氧化性能。该合金冷、热加工性能良好,主要供应热轧棒材、冷拉棒材、热轧板材、冷轧板材、带材以及环形件等,用于制造发动机转子叶片、导向叶片支座、螺栓、叶片锁板等零件。 
1.1 Nimonic80A材料牌号 Nimonic80A。 
1.2 Nimonic80A相近牌号 GH80A(中国)。 
1.3 Nimonic80A材料的技术标准 
1.4 Nimonic80A化学成分 见表1-1。 
表1-1 %


C

Cr

Ni

Al

Ti

0.04~0.10

18.0~21.0

1.00~1.80

1.8~2.7

Co

Fe

B

Mn

Si

P

S

Ag

Bi

Cu

Pb

不大于

2.0

1.50

0.008

0.40

0.80

0.020

0.015

0.0005

0.0001

0.20

0.002

注:B按计算量加入,允许加入微量的Ce、Zr、Mg元素。 
1.5 Nimonic80A热处理制度 叶片用棒材为:1080℃±10℃,8h,空冷+700℃±5℃,16h,空冷。热轧、锻制及冷拉棒材:按表1-2的规定进行。轧制环件:(1050~1080℃)±10℃,不大于2h,水冷+750℃±5℃(或+700℃±5℃),4h(或16h),空冷。热轧板材、冷轧薄板和带材为:供应状态+750℃±10℃,4h,空冷。 
表1-2

材料类型

固溶处理制度

时效制度

热加工用热轧(或锻制)棒材

1080℃±10℃,8h,空冷

700℃±5℃,16h,空冷或750℃±5℃,4h,空冷

热加工用热轧 
(或锻制)棒材

按制度①或②进行 
①1080℃±10℃,保温时间按表1-3规定,油冷或水冷或空冷。(正常情况,d≥40mm,油冷) 
②1080℃±10℃,保温时间按表1-3规定,空冷+1080℃±10℃,保温30min,水冷

冷拉棒材

1080℃±10℃,保温时间按表1-4规定,水冷或空冷。

表1-3

直径/mm

保温时间/h

直径/mm

保温时间/h

≤3

1

>6~12.5

4

>3~6

2

>12.5

8

1.6 Nimonic80A品种规格与供应状态 供应直径d20~55mm的叶片用热轧棒材、直径不大于300mm的热轧或锻制棒材。冷拉棒材供应直径8~45mm圆棒及内切圆直径d8~36mm的六角形棒材。供应外径1000mm、内径900mm、高度130mm的轧制形件。供应厚度不大于9.5mm的热轧板材、厚度不大于4.0mm的冷轧薄板材,厚度不大于0.8mm的冷轧带材。叶片用热轧棒材不经热处理供应,其表面应全部磨光或车光。机加工用热轧棒材经固溶处理并除氧化皮状态供应。镦锻用冷拉棒材以冷拉并磨光状态供应,机加工用冷拉棒材以冷拉经固溶处理并除氧化皮状态供应,热加工用棒材以制造状态并除氧化皮供应(对锻造厂用棒材应车光后供应,其表面粗糙度应不小于3.2μm)。轧制环形件以固溶处理和粗加工状态供应。热轧板材、冷轧板材和带材经软化处理、碱酸洗、切边和平整或矫直后供应。 
1.7 Nimonic80A熔炼与铸造工艺 叶片用棒材和板材采用真空感应熔炼加电渣重熔工艺。轧制环形件与热轧、锻制及冷拉棒材采用感应熔炼加电渣重熔,或真空感应熔炼加真空电弧重熔,或真空感应熔炼加电渣重熔工艺。 
1.8 Nimonic80A应用概况与特殊要求 该合金主要用作发动机转子叶片、导向叶片支座、扇形件安装环、螺栓、叶片锁板等零件。 
二、Nimonic80A物理及化学性能 
2.1 Nimonic80A热性能 
2.1.1 Nimonic80A熔化温度范围 熔点1405℃[1]。 
2.1.2 Nimonic80A热导率 见表2-1。 
表2-1[1]

θ/℃

100

200

300

400

500

600

700

800

900

λ/(W/(m·℃))

12.11

13.83

15.48

16.75

18.39

20.93

23.48

25.57

27.66

2.1.3 Nimonic80A线膨胀系数 见表2-2。 
2.2 Nimonic80A密度 ρ=8.15g/cm3[2]。 
表2-2[2]

θ/℃

16~100

16~200

16~300

16~400

16~500

16~600

16~700

α/10-6℃-1

12.18

12.86

13.69

14.08

14.50

14.94

15.36

2.3 Nimonic80A电性能 室温ρ=1.23×10-6Ω.m[1]。 
2.4 Nimonic80A磁性能 无磁性。 
2.5 Nimonic80A化学性能 
2.5.1 Nimonic80A抗氧化性能 在空气介质中试验100h的氧化速率见表2-3。 
表2-3[3]

θ/℃

700

750

800

氧化速率/(g/(m2·h))

0.037

0.041

0.047

三、Nimonic80A力学性能 
Nimonic80A涡轮叶片用棒材规定性能见表3-1。 
表3-1

技术标准

试样串联对数

持久性能

θ/℃

σ/MPa

断裂时间/h

单个值

平均值

范围值(Rmax)=(F)·()

WS9-7009-1996

3

750

340

≥23

≥32

≤0.6×实际平均值

四、Nimonic80A组织结构 
4.1 Nimonic80A相变温度 
4.2 Nimonic80A时间-温度-组织转变曲线 
4.3 Nimonic80A合金组织结构 叶片毛坯按不同热处理规范处理的组织特征:1080℃±10℃,8h,空冷处理:在1080℃时基体中的γ′相和一些M7C3及M23C6型晶界碳化物溶入固溶体。在冷却过程中晶界形成M7C3和M23C6型富铬碳化物。M7C3大约在1000℃以上沉淀出来,并在较低温度下转变为M23C6。M23C6在750~1000℃析出,也能独立成核,生成晶界碳化物。所以在1080℃±10℃,8h,空冷处理后,晶界上呈现出不连续状态的M7C3和M23C6,晶内有γ′相和MC。 
1080℃±10℃,8h,空冷+700℃±5℃,16h,空冷处理:合金在固溶组织的基础上经700℃±5℃,16h时效,晶界上的M7C3继续转变为M23C6,所以在晶界上沉淀出叫连续的M23C6,晶内的γ′相也长大成球形质点[4]。 
五、Nimonic80A工艺性能与要求 
5.1 Nimonic80A成形性能 
5.1.1 Nimonic80A锻造 合金具有良好的锻造性能。钢锭加热温度1120~1150℃,开锻温度不低于1000℃。停锻温度不低于950℃[2]。 
5.1.2 Nimonic80A热轧板 轧制加热温度1120~1150℃,停轧温度不低于930℃[2]。
5.1.3 Nimonic80A涡轮叶片的锻造 涡轮叶片用毛坯应按规定的工序要求喷涂防护润滑剂,待烘干后方可入炉加热。零件毛坯在电炉中加热,装炉温度800℃±20℃,保温60min,加热温度1090℃±10℃,保温35min,开锻温度1090℃,停锻温度950℃,在卧锻机上顶锻,锻前用二硫化钼润滑模膛。零件毛坯锻造中间工序应进行固溶处理,加热温度1130℃±10℃,保温60min,空冷。吹砂后,再按规定的工序要求喷涂防护润滑剂,烘干后入炉加热。零件毛坯再按上述规定进行装炉、加热、保温,并在曲柄压力机上进行终锻,锻前用二硫化钼润滑模膛。 
5.2 Nimonic80A焊接性能 合金可以进行自动对接氩弧焊和缝焊。 
5.2.1 Nimonic80A不加焊丝的自动钨极氩弧焊(对接)规范见表5-1。 
表5-1[2]

厚度/mm

焊前状态

电流/A

电压/V

焊速/(m/min)

垫板

气体流量/(L/min)

背面气体流量/(L/min)

钨极直径/mm

焊嘴直径/mm

槽宽

槽深

1.2

软态

55

10~12

0.21

4.57

1.5

10~15

5~6

2~4

10~14

注:焊前用砂布打磨试样并用丙酮清洗,厚度不大于1.2mm板材不加充焊丝,一次焊接成形。 
5.2.2 Nimonic80A缝焊规范见表5-2。 
表5-1[2]

厚度/mm

焊前状态

滚盘宽/mm

功率级

电压/V

脉冲格

休止格

热量格

焊接速度/(m/min)

电极压力/N

1.2

软态

5.5

6.5

3

390

15

15

5~8

0.15

8728

5.2.3 Nimonic80A焊接接头的力学性能见表5-3。 
表5-3[2]

焊接方法

接头方式

厚度/mm

焊前状态

焊后状态

接头强度

强度系数/%

θ/℃

σb/MPa

自动氩弧焊

对接

1.2

软态

1080℃±10℃,8h,空冷+750℃±5℃,4h,空冷

20

1138~1236

100

缝焊

搭接

1.2

软态

20

950~1080

85

注:本表数据时两批板材,每批2个试样的拉伸试验数据处理结果。 
5.3 Nimonic80A零件热处理工艺 零件的热处理工艺按相应的材料技术标准的热处理制度进行。对于板材、带材的冲压成形件,在每成形一次后需进行中间真空退火,1060℃±10℃,10min,氩气风扇冷却,零件的最终热处理是在真空炉中进行时效处理,750℃±10℃,4h,氩气风扇冷却。对于叶片在固溶后(时效前)制造过程中产生的局部加工硬化应按规定的要求进行氩气或氢气保护表面退火,退火温度1070~1090℃。 
5.4 Nimonic80A表面处理工艺 
5.5 Nimonic80A切削加工与磨削性能 Nimonic80A具有良好的机加工性能,完全热处理状态具有好的机加工性能。 

表1-4

直径或较小截面尺寸/mm

保温时间/min

直径或较小截面尺寸/mm

保温时间/min

≤15

15~30

>15~25

30~45